Basic Examples 
(3)
 

Loess
is useful when data is noisy but has an underlying trend:
In[1]:=
data=Table[{i,Sin[i]+RandomReal[0.3]},{i,0,2π,0.05}];​​ListPlot[data]
Out[2]=
1
2
3
4
5
6
-1.0
-0.5
0.5
1.0
Find an estimated value for the data at
x=2
using the nearest 12 data points:
In[3]:=
[◼]
Loess
[data,12,2]
Out[3]=
1.05451
Find an estimated value for the data at
x=2
using the nearest 10% of the data:
In[4]:=
[◼]
Loess
[data,Scaled[0.10],2]
Out[4]=
1.04627
In[5]:=
ListPlotTablex,
[◼]
Loess
[data,40,x],{x,0,2π,0.2}
Out[5]=
1
2
3
4
5
6
-0.5
0.5
1.0

Scope 
(1)
 


Options 
(2)
 


Possible Issues 
(3)
 
