Basic Examples 
(13)
 

Test whether a basic power function is odd:
In[1]:=
[◼]
OddFunctionQ
[x^3,x]
Out[1]=
True
———
———
Test another power function:
In[1]:=
[◼]
OddFunctionQ
[x^2,x]
Out[1]=
False
———
———
Test whether a constant function is odd:
In[1]:=
[◼]
OddFunctionQ
[1,x]
Out[1]=
False
———
———
Test whether the absolute value function is odd:
In[1]:=
[◼]
OddFunctionQ
[Abs[x],x]
Out[1]=
False
———
———
Test whether the sine function is odd:
In[1]:=
[◼]
OddFunctionQ
[Sin[x],x]
Out[1]=
True
———
———
Test whether the cosine function is odd:
In[1]:=
[◼]
OddFunctionQ
[Cos[x],x]
Out[1]=
False
———
———
Test whether a gaussian function is odd:
In[1]:=
[◼]
OddFunctionQ
[Exp[-x^2],x]
Out[1]=
False
———
———
Test a signed gaussian function:
In[1]:=
[◼]
OddFunctionQ
[Sign[x]Exp[-x^2],x]
Out[1]=
True
———
———
Test whether a hyperbolic sine function of two variables is odd:
In[1]:=
[◼]
OddFunctionQ
[Sinh[x+y],{x,y}]
Out[1]=
True
———
———
Test whether the hyperbolic tangent function is odd:
In[1]:=
[◼]
OddFunctionQ
[Tanh[x],x]
Out[1]=
True
———
———
Test whether the error function is odd:
In[1]:=
[◼]
OddFunctionQ
[Erf[x],x]
Out[1]=
True
———
———
Test whether a Fresnel integral is odd:
In[1]:=
[◼]
OddFunctionQ
[FresnelC[x],x]
Out[1]=
True
———
———
Test whether a shifted Fresnel integral is odd:
In[1]:=
[◼]
OddFunctionQ
[FresnelC[x]+1,x]
Out[1]=
False

Scope 
(3)
 
