In[]:=

Basic Examples

Test whether a basic power function is odd:
In[]:=
[◼]
OddFunctionQ
[x^3,x]
Out[]=
True
Test another power function:
In[]:=
[◼]
OddFunctionQ
[x^2,x]
Out[]=
False

Applications

Test whether a constant function is odd:
In[]:=
[◼]
OddFunctionQ
[1,x]
Out[]=
False
Test whether the absolute value function is odd:
In[]:=
[◼]
OddFunctionQ
[Abs[x],x]
Out[]=
False
Test whether the sine function is odd:
In[]:=
[◼]
OddFunctionQ
[Sin[x],x]
Out[]=
True
Test whether the cosine function is odd:
In[]:=
[◼]
OddFunctionQ
[Cos[x],x]
Out[]=
False
Test whether a Gaussian function is odd:
In[]:=
[◼]
OddFunctionQ
[Exp[-x^2],x]
Out[]=
False
Test a signed Gaussian function:
In[]:=
[◼]
OddFunctionQ
[Sign[x]Exp[-x^2],x]
Out[]=
True
Test whether a hyperbolic sine function of two variables is odd:
In[]:=
[◼]
OddFunctionQ
[Sinh[x+y],{x,y}]
Out[]=
False
Test whether the hyperbolic tangent function is odd:
In[]:=
[◼]
OddFunctionQ
[Tanh[x],x]
Out[]=
True
Test whether the error function is odd:
In[]:=
[◼]
OddFunctionQ
[Erf[x],x]
Out[]=
True
Test whether a Fresnel integral is odd:
In[]:=
[◼]
OddFunctionQ
[FresnelC[x],x]
Out[]=
True
Test whether a shifted Fresnel integral is odd:
In[]:=
[◼]
OddFunctionQ
[FresnelC[x]+1,x]
Out[]=
False