Basic Examples 
(2)
 

Select from the list
{5,6,7,8,9}
those permutations that form a prime when concatenating the digits:
In[13]:=
[◼]
SelectPermutations
[{5,6,7,8,9},PrimeQ@*FromDigits]
Out[13]=
{{5,6,8,9,7},{5,7,6,8,9},{5,8,6,7,9},{5,8,9,6,7},{6,5,7,8,9},{6,7,5,8,9},{6,8,5,9,7},{6,9,8,5,7},{7,5,6,8,9},{7,5,8,6,9},{7,8,5,6,9},{8,6,5,7,9},{8,9,5,6,7},{8,9,6,5,7},{9,6,5,8,7},{9,6,8,5,7}}
Select those permutations having length 3:
In[14]:=
[◼]
SelectPermutations
[{5,6,7,8,9},{3},PrimeQ@*FromDigits]
Out[14]=
{{5,6,9},{5,8,7},{6,5,9},{7,6,9},{8,5,7},{8,5,9},{9,6,7}}
Select those permutations having length 3–4:
In[15]:=
[◼]
SelectPermutations
[{5,6,7,8,9},{3,4},PrimeQ@*FromDigits]
Out[15]=
{{5,6,9},{5,8,7},{6,5,9},{7,6,9},{8,5,7},{8,5,9},{9,6,7},{5,6,8,9},{5,8,6,7},{5,8,6,9},{5,8,7,9},{5,8,9,7},{5,9,8,7},{6,8,5,7},{7,5,8,9},{8,5,9,7},{9,5,8,7},{9,8,5,7}}
———
Select permutations of
{1,2,3,4}
for which the first two elements and the last elements add up to the same value:
In[72]:=
[◼]
SelectPermutations
[{1,2,3,4},Total[#[[1;;2]]]==Total[#[[3;;4]]]&]
Out[72]=
{{1,4,2,3},{1,4,3,2},{2,3,1,4},{2,3,4,1},{3,2,1,4},{3,2,4,1},{4,1,2,3},{4,1,3,2}}

Scope 
(1)
 


Applications 
(2)
 


Properties and Relations 
(3)
 


Possible Issues 
(2)
 
